The Glycosphingolipid Metabolic Pathway in Lysosomal Storage Diseases

What are GSLs?

Glycosphingolipids (GSLs) are lipids comprised of a hydrophilic sugar chain attached to a hydrophobic membrane lipid anchor, ceramide.1,2 GSLs are important building blocks of cell membranes and fulfill diverse functions.2,3 They are vital to maintaining cellular homeostasis and contribute to physiological processes such as cell signaling and regulation of inflammation.2-5

GSL functions provide2,3,5:

Cell membrane building blocks
Cell membrane
building blocks
Cellular homeostasis
Cellular homeostasis
Myelin insulation of axons
Myelin insulation
of axons
Regulation of T cells
Regulation
of T cells
Cell signaling
Cell
signaling
Expression of blood group antigens
Expression of blood
group antigens

The GSL metabolic pathway

GSL formation occurs in the Golgi apparatus of cells, and degradation happens in lysosomes. One of the first steps in GSL formation is catalyzed by an enzyme called glucosylceramide synthase (GCS) at the top of the GSL pathway.4,6,7 Tight regulation of the biosynthesis, degradation, and intracellular tracking of GSLs is necessary as they serve many critical functions for cells.3

GSL metabolic pathway and lysosomal storage diseases

Pathogenic variants compromise the lysosomal enzymes responsible for degrading GSLs, which can lead to lysosomal storage diseases (LSDs). The progressive and relentless pathologic accumulation of substrates such as GSLs in lysosomes, which can eventually affect cell functions, is the hallmark of LSDs.2,8 The affected cells become functionally impaired or destroyed, leading to toxic effects in the different LSDs.9

Cell
Lysosome10
Cell membrane Normal Lysosome Lysosomal storage diseases
Normal
Lysosomal
storage diseases
Adapted from Mashima R et al. Int J Mol Sci. 2020;21(8):E2704.

The GSL Metabolic Pathway4,5,9,11-14

Legend:

Lysosomal storage diseases
Lysosomal
storage diseases
GSL accumulation
GSL accumulation
Enzyme
Enzyme
Enzyme deficiency
Enzyme deficiency
Degradation
Degradation
Formation
Formation
GSL metabolic pathway GSL metabolic pathway
Sphingomyelin
Sphingomyelin synthase
Acid sphingomyelinase
Ceramide
Acid β-glucosidase (GBA)
Glucosylceramide synthase (GCS)
GSL: glucosylceramide (GL-1)
Lactosylceramide
GL-3 synthase
Ganglioside GM3
α-galactosidase 
A
β-hexosaminidase
GM2 synthase
GSL: globotriaosylceramide (GL-3)
GSL: ganglioside GM2

For illustrative purposes only.

References: 1. Breiden B, Sandhoff K. Lysosomal glycosphingolipid storage diseases. Annu Rev Biochem. 2019;88:461-485. doi:10.1146/annurev-biochem-013118-111518 2. Aerts JMFG, Kuo CL, Lelieveld LT, et al. Glycosphingolipids and lysosomal storage disorders as illustrated by Gaucher disease. Curr Opin Chem Biol. 2019;53:204-215. doi:10.1016/j.cbpa.2019.10.006 3. Ryckman AE, Brockhausen I, Walia JS. Metabolism of glycosphingolipids and their role in the pathophysiology of lysosomal storage disorders. Int J Mol Sci. 2020;21(18):E6881. doi:10.3390/ijms21186881 4. Shayman JA. Targeting glucosylceramide synthesis in the treatment of rare and common renal disease. Semin Nephrol. 2018;38(2):183-192. doi:10.1016/j.semnephrol.2018.01.007 5. van Eijk M, Ferraz MJ, Boot RG, Aerts JMFG. Lyso-glycosphingolipids: presence and consequences. Essays Biochem. 2020;64(3):565-578. doi:10.1042/EBC20190090 6. Natoli TA, Modur V, Ibraghimov-Beskrovnaya O. Glycosphingolipid metabolism and polycystic kidney disease. Cell Signal. 2020;69:109526. doi:10.1016/j.cellsig.2020.109526 7. Grassi S, Chiricozzi E, Mauri L, Sonnino S, Prinetti A. Sphingolipids and neuronal degeneration in lysosomal storage disorders. J Neurochem. 2019;148(5):600-611. doi:10.1111/jnc.14540 8. Dodge JC. Lipid involvement in neurodegenerative diseases of the motor system: insights from lysosomal storage diseases. Front Mol Neurosci. 2017;10:356. doi:10.3389/fnmol.2017.00356 9. Schulze H, Sandhoff K. Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol. 2011;3(6):a004804. doi:10.1101/cshperspect.a004804 10. Mashima R, Okuyama T, Ohira M. Biomarkers for lysosomal storage disorders with an emphasis on mass spectrometry. Int J Mol Sci. 2020;21(8):E2704. doi:10.3390/ijms21082704 11. McGovern MM, Lippa N, Bagiella E, Schuchman EH, Desnick RJ, Wasserstein MP. Morbidity and mortality in type B Niemann-Pick disease. Genet Med. 2013;15(8):618-623. doi:10.1038/gim.2013.4 12. Grabowski GA. Gaucher disease and other storage disorders. Hematology Am Soc Hematol Educ Program. 2012;2012:13-18. doi:10.1182/asheducation-2012.1.13 13. Stirnemann J, Belmatoug N, Camou F, et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18(2):E441. doi:10.3390/ijms18020441 14. Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta. 1999;1455(2-3):105-138. doi:10.1016/s0925-4439(99)00074-5 15. Wasserstein MP, Desnick RJ, Schuchman EH, et al. The natural history of type B Niemann-Pick disease: results from a 10-year longitudinal study. Pediatrics. 2004;114(6):e672-e677. doi:10.1542/peds.2004-0887 16. McGovern MM, Avetisyan R, Sanson BJ, Lidove O. Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (Asmd). Orphanet J Rare Dis. 2017;12(1):41. doi:10.1186/s13023-017-0572-x 17. Wang RY, Bodamer OA, Watson MS, Wilcox WR; ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med. 2011;13(5):457-484. doi:10.1097/GIM.0b013e318211a7e1 18. Pastores GM, Weinreb NJ, Aerts H, et al. Therapeutic goals in the treatment of Gaucher disease. Semin Hematol. 2004;41(4 suppl 5):4-14. doi:10.1053/j.seminhematol.2004.07.009 19. Cox TM. Gaucher disease: understanding the molecular pathogenesis of sphingolipidoses. J Inherit Metab Dis. 2001;24(suppl 2):106-121; discussion 87-88. doi:10.1023/a:1012496514170 20. Mistry PK, Cappellini MD, Lukina E, et al. A reappraisal of Gaucher disease-diagnosis and disease management algorithms. Am J Hematol. 2011;86(1):110-115. doi:10.1002/ajh.21888. 21. Schiffmann R, Sevigny J, Rolfs A, et al. The definition of neuronopathic Gaucher disease. J Inherit Metab Dis. 2020;43(5):1056-1059. doi:10.1002/jimd.12235 22. Roshan Lal T, Sidransky E. The spectrum of neurological manifestations associated with Gaucher disease. Diseases. 2017;5(1):E10. doi:10.3390/diseases5010010 23. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. doi:10.1186/1750-1172-5-30 24. Desnick RJ, Ioannou YA, Eng CM. α-galactosidase A deficiency: Fabry disease. In: Valle DL, Antonarakis S, Ballabio A, eds. The Online Metabolic and Molecular Bases of Inherited Disease. McGraw Hill; 2020. 25. Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416-427. doi:10.1016/j.ymgme.2018.02.014 26. Bisel B, Pavone FS, Calamai M. GM1 and GM2 gangliosides: recent developments. Biomol Concepts. 2014;5(1):87-93. doi:10.1515/bmc-2013-0039 27. Cachon-Gonzalez MB, Zaccariotto E, Cox TM. Genetics and therapies for gm2 gangliosidosis. Curr Gene Ther. 2018;18(2):68-89. doi:10.2174/1566523218666180404162622 28. Fernandes Filho JA, Shapiro BE. Tay-Sachs disease. Arch Neurol. 2004;61(9):1466-1468. doi:10.1001/archneur.61.9.1466 29. Lyn N, Pulikottil-Jacob R, Rochmann C, et al. Patient and caregiver perspectives on burden of disease manifestations in late-onset Tay-Sachs and Sandhoff diseases. Orphanet J Rare Dis. 2020;15(1):92. doi:10.1186/s13023-020-01354-3 30. Zhang J, Chen H, Kornreich R, Yu C. Prenatal diagnosis of Tay-Sachs disease. Methods Mol Biol. 2019;1885:233-250. doi:10.1007/978-1-4939-8889-1_16 31. Rochmann C, Petrovic M, Flores AL, Kabadi S. Identification of late-onset GM2 gangliosidoses (LOGG) patients using Optum’s de-identified Market Clarity Database. Poster presented at: 18th Annual WORLDSymposium; February 7-11, 2022; San Diego, CA. Poster 263. 32. Toro C, Shirvan L, Tifft C. Hexa disorders. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews®. University of Washington, Seattle; 1993. 33. Chamoles NA, Blanco M, Gaggioli D, Casentini C. Tay-Sachs and Sandhoff diseases: enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta. 2002;318(1-2):133-137. doi:10.1016/s0009-8981(02)00002-5 34. Sung AR, Moretti P, Shaibani A. Case of late-onset Sandhoff disease due to a novel mutation in the HEXB gene. Neurol Genet. 2018;4(4):e260. doi:10.1212/NXG.0000000000000260